Research Forum

Western faculty, graduate students and guest lectures from academia, the space industry and government present new discoveries, mission-specific opportunities, interesting training initiatives as well as industry-specific policies, challenges and prospects with the intention of informing and engaging participants in discussions about relevant topics in planetary science and exploration.

2019-2020 Research Forum Schedule

Els Peeters November 22 2019 – PAB 100 12:30 – 1:30pm

Western’s eyes on the JWST skies

Today, the world is eagerly awaiting the launch of the James Webb Space Telescope (JWST). Hailed as the bigger and more sensitive successor to the Hubble Space Telescope (HST), JWST will similarly inspire the general public and have researchers develop the most innovative approaches to process and analyze observations of unprecedented quality to study the Universe near and far. Given these expectations, the entire world will be watching closely when the first science observations with JWST are presented to the public, and those may well have a Canadian stamp on them. In this talk, I'll give a general description of JWST and its capabilities, and I will highlight how Western is involved in the first science observations to be made by JWST
Paul Wiegert November 15 2019 – PAB 100 12:30 – 1:30pm

Interstellar asteroids and comets: what are they and where do they come from?

In 2017, the first asteroid to enter our Solar System from interstellar space was discovered by Rob Weryk (who did his PhD here at Western) at the PanSTARRS telescope. The asteroid is now called 'Oumuamua, a Hawaiian term which signifies 'Messenger from Afar'. Now in 2019 a second visitor, comet Borisov (named after its discoverer) has also appeared. 'Oumuamua was rocky (unexpected), relatively slow (unexpected) and small (expected); while Borisov is icy (expected), fast (expected) and large (unexpected). I'll briefly summarize what we know about these puzzling visitors, and outline the efforts being made at Western to back-track them to their points of origin, somewhere within our Milky Way galaxy.
Nick Craine November 8 2019 – UCC 54A 12:30 – 1:30pm

Pioneering the Stratosphere: High Altitude Benefits from the Evolving UAV Landscape

Stratodynamics provides high-altitude earth observation platforms and services enabling new, cost-effective access to the stratosphere. Their recent flight from the Canadian Space Agency's Stratos Balloon Base achieved many firsts in Canadian aviation including: the first release of a UAV from a scientific gondola in Canada; the first UAV flight above 29,000 feet in Class A airspace; and the highest altitude flight of a UAV or remotely piloted aerial system (RPAS). Gary Pundsack and Nick Craine will present the details of the record breaking August 31st flight, discuss their recent NASA flight opportunity award and display their flagship platform called the HiDRON.
Catheryn Ryan November 1 2019 – UCC 54A 12:30 – 1:30pm

The distribution of organic material in Martian-analogue volcanic rocks, as determined with ultraviolet laser-induced fluorescence spectroscopy

The Biologic Analog Science Associated with Lava Terrains (BASALT) research project (Lim et al., 2019) has been developed to test exploration capabilities and return samples from two Mars-analogue volcanic environments. We used an ultraviolet laser-induced fluorescence (LIF) spectroscopy instrument to detect and characterize the distribution of potential organic biosignatures in samples returned from two BASALT mission deployments and correlate the fluorescence results with a variety of sample properties. These samples represent a range of alteration conditions found in the volcanic environments of Hawai’i Volcanoes National Park, HI, USA and Craters of the Moon National Monument, ID, USA. Samples were also analyzed using scanning electron microscopy with electron-dispersive x-ray spectroscopy (SEM-EDS) to characterize the mineralogy present at fluorescent points-of-interest and confirm the presence of carbon-bearing material. Finally, He-gas pycnometry and micro-computerized tomography were used to determine the porosity of the samples, which could be compared to the results from LIF and SEM-EDS measurements. Some minerals deposited in the sample vesicles through fumarolic activity were found to be highly fluorescent, with time-resolved fluorescence spectra suggesting the presence of organic material associated with these mineral deposits. Overall, samples collected proximate to active or relict meteoric fumaroles from Hawai’i were shown to contain materials with strong evidence for organic deposits, compared to little evidence in samples collected from Idaho.
High Altitude Balloon team October 25 2019 – UCC 54A 12:30 – 1:30pm

High Altitude Balloon Initiative

The High Altitude Balloon Initiative began in January 2018 and has launched two separate payloads since its conception. In May 2018 the team launched a ~2 kg payload carrying a suite of various atmospheric sensors to study the environment of the upper atmosphere. While the initial assembly of the team and the launch itself was successful, the loss of GPS data at the apex of the flight complicated the recovery of the payload. The payload was recovered on May 29, 2019 near Grand Valley, Ontario after being discovered in a field. To conduct a second launch in 2019, the High Altitude Balloon (HAB) team partnered with the Students for the Exploration and Development of Space (SEDS)-Canada and the Canadian Space Agency (CSA) to sample microbial aerosols via stratospheric balloon as part of the CSA’s STRATOS program. The ~800, 000 cubic meter balloon travelled to an altitude of 37 km and Westernu HAB’s payload, housed on the gondola, was controlled remotely from the ground during the flight. The gondola was shared by five other experiments running simultaneously. SEDS-Canada had arranged to reserve two spaces on the CSA’s gondola, one of which had been granted to the Westernu HAB team for this year’s launch. The experiment successfully sampled microbial aerosols at four different points during the flight and was returned via helicopter to have the samples preserved as soon as possible. Currently the samples are being analyzed to determine whether any variations exist as a function of altitude.
photo of Gavin Tolometti Gavin Tolometti October 18 2019 – UCC 54A 12:30 – 1:30pm

Volcanic Analogue for the Exploration of Mars

In July 2019, Gavin Tolometti traveled to the 2014-15 Holuhraun lava field in Iceland to study its diverse lava flow morphology's and compare them to radar and high-resolution (cm-scale) topographic remote sensing data. Remote sensing data is relied upon when studying the morphology of surface features, including lava flows, on other planetary bodies such as Mars. It is important to understand how to interpret the data because results and interpretations are dependent on the wavelength scale and resolution. Gavin will discuss why it is important to understand and compare different remote sensing datasets to study lava flow morphology and summarize the research that has been completed and currently ongoing at the 2014-15 Holuhraun lava field.

The Holuhraun lava field is situated in the Bárðarbunga-Veiðivötn, one of Iceland’s largest volcanic systems, and is marked as the largest effusive basaltic eruption since the Laki eruption in 1783-84. On the 29th of August 2014, a small 600 m long fissure opened on the floodplain and for four hours basaltic lava erupted onto the surface. Extension of the fissure to 1.8 km occurred after twenty-four hours of inactivity. From the 31st of August to the 27th February 2015, the effusive basaltic eruption occurred and had a maximum discharge rate of ≥350 m3/s, average flux of ~90 m3/s, a total area cover of ~85.4 km2 and an estimated bulk volume of 1.44 km3. The lava field stands as a strong Martian analogue site because of its pristine condition, hosting lava flow morphology's analogous to Martian lava flows, proximity to glaciers and diverting an active hydrology system, which has implications for astrobiology.
photo of Phile Stooke Phil Stooke– October 4 2019 – UCC 54A 12:30 – 1:30pm

Solar System Roundup

On the 62nd anniversary of the launch of Sputnik 1 and the dawn of the Space Age, Phil Stooke will provide a summary of current events in the solar system. From rovers on the Moon and Mars, and sampling missions to two asteroids, to orbiters at Venus, Mars and Jupiter, there is plenty going on up there and a lot more planned for the near future. Phil will survey these science missions and other developments in space exploration including new rockets and plans for human space flight in the next few years.
photo of Gordon Osinski Gordon Osinski– September 27 2019 – UCC 54A 12:30 – 1:30pm

Exploring Other Worlds By Exploring Our Own

The world of space exploration is rapidly evolving. More than ever before, the international scientific community is attempting to answer fundamental questions on the origins of life and of the Solar System, by exploring other planetary bodies. There are currently more active robotic space missions than at any other time in history. It is clear that humans will return to the Moon, possibly within the next 5 years. The Moon is the only planetary body, besides the Earth, to have been explored by humans. Currently, the only way we can "explore" Mars and other planetary bodies is via images and chemical data sent back from unmanned orbiting spacecraft and rovers, and through the study of meteorites. Interpretations of other planetary bodies must, however, begin by using the Earth as a reference. This introduces the concept of terrestrial analogues, which are places on Earth that approximate the geological, environmental and/or putative biological conditions on Mars and other planetary bodies, either at the present-day or sometime in the past. From impact craters to hot springs to polar deserts, Canada possesses a wide variety of analogue sites that serve to inform scientific interpretations from space missions through the field of comparative planetology.

In addition to enabling comparative planetology studies, terrestrial analogues allow for the development and testing of technologies, psychological studies for long duration space missions, software and operations architectures, the training of personnel for future missions, and opportunities to engage and educate children and the general public. Analogue missions represent integrated, interdisciplinary field campaigns conducted in terrestrial analogue environments and provide a critical pathway in preparing to return to the Moon. 
photo of Ken McIssac Ken McIsaac – September 20 2019 – UCC 54A 12:30 – 1:30pm
Space weather phenomena is a complex area of research and many different variables and signatures are used to identify the occurrence of solar storms and Interplanetary Coronal Mass Ejections (ICMEs), with inconsistencies between databases and solar storm catalogues. The identification of space weather events is important from a satellite operation point of view, as strong geomagnetic storms can cause orbit perturbations to satellites in low-earth orbit. The Disturbance Storm-Time (Dst) and the Planetary K-index (Kp) are common indices used to identify the occurrence of geomagnetic storms caused by ICMEs, among several other signatures that are not consistent with every storm. Moreover, specific instrumentation is needed for solar storm and space weather phenomena, which can be costly and infeasibly difficult for small and nano-satellite applications. In our work, we demonstrate the capability of a new signature for identification and characterization of Interplanetary Coronal Mass Ejections, through the use of satellite accelerometer data from the GRACE satellite, and machine learning techniques. Utilizing pre-existing satellite instrumentation, we propose the use of accelerometers for future space weather monitoring applications. Four binary classification algorithms have been explored: Random Forest, Support Vector Machine, Extremely Randomized Trees, and Logistic Regression. It is proposed that a binary classification model can differentiate between a solar storm caused by an ICME versus a period of quiet geomagnetic activity, using only the accelerometer data of a satellite.
Tune in the day of live!

2018-2019 Research Forum Schedule

Friday October 19th at 12:30 PM in PAB 100 - Kelsey Doerksen - "Statistical analysis of the Earth's Thermosphere density levels during Solar Flare events measured by GRACE and CHAMP satellites "

 

Abstract:  The relationships between solar flares, the Earth’s Thermosphere, and the satellite’s orbiting our planet are of crucial importance for satellite operators to understand. The solar flare events in association with the Geomagnetic Halloween storm of 2003 have been studied in the past, however there has been a lack of research into the effects of solar flares without the accompaniment of Coronal Mass Ejections (CMEs). This talk details the investigation of the Thermosphere’s response to X-class solar flare events from 2002-2017, with a focus on the years 2002-2006. The Thermosphere density, derived from the on-board accelerometers of the Gravity Recovery and Climate Experiment (GRACE) twin satellites, and the CHallenging Minisatellite Payload (CHAMP) satellite, provide the information required to perform a statistical analysis on the effects of the solar flare events with respect to the Thermosphere density and the satellite’s attitude. It is proposed that the flux brought to the Earth by flares may have a large enough impact on the Earth’s Thermospheric density such that the drag perturbation induced on the orbiting satellites would increase. The presence of fluctuations in the density-derived data of the satellites, corresponding to the time of the flare events, is thought to be a result of the increased drag force causing visible and significant accelerometer fluctuations. Increasing drag force on satellites could then result in the need for in-orbit attitude adjustments, which could pose an increased risk in space-debris collision. A statistical analysis of the X-class events during the lifetimes of GRACE and CHAMP could provide insight to the probable increase of the Earth’s Thermospheric denisty due to the differing strengths of these flares. Such knowledge would be valuable to spacecraft operators entering a period of solar maximum, where an increase in solar activity is expected.

2018 Research Forum Schedule

January 12, 2018 - Dr. Phil Stooke - "The Year of the Moon"

Abstract:  2018 will be an interesting year on the Moon. Two missions will land rovers - one from India, one from China. A second Chinese mission, a sample return, may fly in 2018, though it is more likely to be delayed to 2019. And what of the Google Lunar X prize, which expires in 2018?  Phil Stooke surveys lunar exploration prospects for 2018 and looks at proposed landing sites.

January 26, 2018 - Dr. Gordon Osinski - "Western Space Update"

February 9, 2018 - Yifan Zhou, The University of Arizona - "Cloud Atlas of Brown Dwarfs and Exoplanets"

Abstract: Spectroscopic observations of exoplanets have achieved spectacular success in recent years. These observations not only probed molecular species and atmospheric compositions but also revealed the condensate clouds in these atmospheres. Due to its complex formation processes and significant opacity contributions, the condensate clouds pose a key challenge in understanding the ultra-cool atmospheres of exoplanets. Time-resolved observation of cloud-induced rotational modulations is a powerful technique to study the condensate clouds in substellar atmospheres. Using light curves derived from these observations, we can determine cloud vertical structures and retrieve two-dimensional cloud maps, which provide important constraints on the cloud formation and atmospheric circulation models. Time-resolved observations have achieved great success for brown dwarf and start to be applied to directly imaged exoplanets.  We carried out an HST treasury program   Cloud Atlas  to apply this technique to 19 brown dwarfs, planetary companions and directly imaged exoplanets. I will present the latest results from Cloud Atlas program, especially focusing on high-contrast directly-imaged exoplanets/planetary mass companions, to demonstrate how rotational modulations reveal condensate clouds in these cases. These results highlight the power of time-resolved observations — already transforming brown dwarf studies —  to characterize directly imaged exoplanets and planetary-mass companions.

 

February 16, 2018 - *2:00 PM - 3:00 PM - BGS 0153*  Dr. David Kring, Lunar and Planetary Institute - " The Calamitous Chicxulub Impact Event"
 
Abstract:  The ~180 km-diameter Chicxulub impact crater, located on the Yucatán Peninsula of Mexico, is famously linked to the extinction of dinosaurs and most other forms of life on Earth nearly 66 million years ago.  I will review the discovery of the crater and the impact’s environmental effects.  While those effects and their role in the mass extinction that followed have been the foci of most previous studies, it is now recognized that the crater and the hydrothermal system it hosted may also be proxies for the geological processes that shaped the Hadean.  I will, thus, introduce a recent IODP and ICDP expedition to the crater that was designed, in part, to test models of impact-generated hydrothermal systems and their possible role in the origin and evolution of life on Earth.

 

March 2, 2018 - Dr. Etienne Godin - "Geomorphology of Gullies at Thomas Lee Inlet, Devon Island, Canadian High Arctic"

Abstract: Landscape erosion by way of gullying is very common in the continuous permafrost of Earth’s polar regions and Mars mid to high latitudes along plateau slopes. Gullies are particularly interesting because their presence raises questions about the factors contributing to their formation, shape and morphometrics. Water is one such factor driving gully evolution, as runoff or when present as ground ice. Yet water under its liquid form is not the only factor influencing gullies. We surveyed the plateau slopes and their erosional processes at the cold and arid Thomas Lee Inlet, Devon Island, in the Canadian High Arctic where numerous gullies (n=161) were characterized for their morphometrics geology and hydrological connectivity. In this presentation I will present our recent progress based in 2016 and 2017 fieldwork, how this was integrated into a geodatabase and how we used a statistical tool named Factor Analysis of Mixed Data to classify and group the factors.

March 9, 2018 Dr. Pauline Barmby "Big data in space science"

Abstract:  It seems like “big data” is everywhere these days. In planetary science and astronomy, we’ve been dealing with large datasets for a long time.  So how “big” is our data? How does it compare to the big data that a bank or an airline might have? What new tools do we need to analyze big datasets, and how can we make better use of existing tools? What kinds of science problems can we address with these?  I’ll address these questions with examples including ESA’s Gaia mission, NASA’s WISE mission, and NASA’s Planetary Data System, as well as some of my group’s work on multiwavelength studies of nearby galaxies.

April 13, 2018 - Adam Roy - "Harmony of the Spheres: Engaging Space Science in Music Theory and Practice"

Abstract: Whether The Planets by Gustav Holst, the Start Wars saga by John Williams, or Space Oddity by David Bowie, many things come to mind when thinking of space music or the music of space. While these compositions may express a modern understanding of music as it relates to ideas of space, they largely overlook the shared disciplinary origins and connections between the fields of music and science. The rich historic foundations of the singularity that was planetary science and music theory formed initial explorations of cosmological truth(s) and dominated the intellectual discourse for a significant period in our intellectual history. In the course of this talk I will discuss the historic interconnections of space science and music, the aesthetic representations of such concepts through musical compositions, and the graphic means by which representations of musical spaces play a role in performance practice and transmission. Tracing sonic and conceptual mappings of our universe from Pythagoras and Aristotle to the Renaissance and Enlightenment perspectives of Mersenne, Kepler, Newton, and beyond, this paper explores the harmonious blending between the worlds of science and music. Through explorations of theoretical foundations, compositional intent, and performance practice, I will survey the unique link between the realms of space science and the musical arts.

2017 Research Forum Schedule

September 22 - Dr. Michael Zanetti- "Kinematic LiDAR Scanning: Ultra-high resolution field mapping with a backpack scanner"

Abstract: Kinematic LiDAR scanning (KLS) is a new mobile LiDAR technology for creating ultra-high resolution (1 cm/pixel) topographic digital terrain models (DEMs), and represents a new tool for geologic and geographic exploration.  The scanner is mounted on a backpack allowing the operator to make a 3D point cloud reconstruction of any structure or feature that can be walked over or around (e.g. volcanic features, patterned ground, hillslopes, or buildings). This presentation will show how we are using mobile LiDAR scanning to map periglacial features in the Canadian High Arctic and volcanic features in Idaho, USA, and how these scans are being applied to remote-sensing analyses and other scientific resea rc h.

September 29 - Dr. Paul Wiegert - "Detecting Invisible Planets and Other Neat-o Things Planetary Dynamics Can Do For You"

Abstract: The question of how planets and other bodies orbiting the Sun behave and interact is one of the oldest problems in physics. But despite the long history of Planetary Dynamics, the richness of non-linear systems of this type continues to present us with surprises and opportunities for 21th century discoveries. I will outline a few of the current Planetary Dynamics research projects being worked on here at Western. Included on the menu are how the Moon helped capture an ill-fated temporary moon of our planet, strange asteroids that go the 'wrong way' around the Solar System, whether pieces of the Martian moons Phobos and Deimos could ever hit you on the head, and how to detect 'invisible' planets orbiting other stars.

October 6 - No Research Forum due to Thanksgiving

October 20 - Danny Bednar - " 50 years of the Outer Space Treaty: What's in it and Where's it Going?"

Abstract: October 10 th , 2017, marked 50 years since the Outer Space Treaty entered into force. In it’s five decades, the treaty has been signed by 105 nations, including every space-faring government in the world, and is often referred to as the single most important document related to outer space politics. While the treaty has been noted for it’s optimistic language that focuses on international cooperation and scientific exploration, it has also been contested by a variety of long-standing and emerging interests within the broader space community. What exactly is in the treaty and what parts are contested? This talk will cover the major components of the Outer Space Treaty, focusing mostly on Articles I-X. Further, current and future interests such as those related to orbital debris mitigation, resource extraction, off-Earth colonization, and increased militarization will be discussed regarding future challenges for the OST and the continuing debate of who, and what, space is for.

October 27 - Dr. Peter Brown - " Fireball producing meteorites: A Canadian perspective "

November 3 - Dr. Livio Tornabene - " HIRISE Planning from WesternU: Highlights from teams 273 and 285 "

Abstract: The members of the last two WesternU HiRISE operations teams (Teams 273 and 285), led by adjunct research professor Livio Tornabene, will present their latest exploits, and what they experienced while planning two-week’s worth of high-resolution images of the surface of Mars from WesternU’s Mission Control facility. Come hear all about it and see some of their favorite images! HiRISE’s 273 rd imaging campaign executed on Saturday, April 15 th and continued to Saturday, April 29 th as Mars continued into Northern Spring / Southern Fall. The 285 th HiRISE imaging campaign executed on Saturday, September 30 and continued to Saturday, October 14th as Mars continued into Northern Summer/Southern Winter.

November 10 - Dr. Sarah Gallagher - "How to ruin a beautiful machine:  Radiation damage in the early days of the Chandra X-ray Observatory"

Abstract: In the first months after the launch of the Chandra X-ray Observatory, abrupt radiation damage to the ACIS CCD detectors was discovered.  The damage affected the sensitivity, image quality, and energy resolution of an exquisite instrument, and had to be stopped and mitigated as much as possible. From my perspective as a graduate student on the ACIS instrument team, I’ll talk about how the risk of radiation damage should have been anticipated, and how the fixes were only possible because the telescope had been over-engineered and beautifully calibrated.

November 17 - Rushi Ghadawala - " Space Entrepreneurship: Issues, Opportunities, and Challenges for Commercial Space Sector "

Abstract: During the talk, I intend to talk about the journey of BR Aerospace Group since foundation and connect it with the proposed title of my talk, "Space Entrepreneurship: Issues, Opportunities, and Challenges for Commercial Space Sector". During the talk, I will also mention the role of space applications in the capacity building for nations and states, based on the outcome of recent UNOOSA symposium and participation of BRASS-Canada. I also intend to throw some light on our past projects, on-going projects, including MOSES project under the H2020 consortium in the European Union, and upcoming project of UNOOSA's Dreamchaser mission participation and development of Solar Powered UAV for EO purpose. I am also planning to highlight my engagement with UWO and possible roadmap of working together.

November 24 - Gavin Tolometti - Rosetta Legacy Workshop Summary

Abstract: On the 2nd of March 2004, the European Space Agency (ESA) launched the Rosetta spacecraft and its lander Philae on its journey to orbit and analyse the comet 67P/Churyumov-Gerasimenko. The spacecraft took approximately ten years to reach the comet and then spent two years orbiting it. On the 12th of November 2014, the Philae lander was detached from the spacecraft and began its decent towards the comets surface. The spacecraft continued to orbit the comet until the 30th of September 2016, when the mission concluded with a controlled impact on the comet. The Rosetta mission was one of the most inspirational and ambitious missions conducted in the 21st century. As all missions, it required the cooperation of scientists and engineers from diverse science backgrounds. The mission was also contributed by ESA’s member states and NASA. From the 3rd to 6 th of October this year, experts from the Rosetta mission (including engineers who designed the equipment) organized the first “Rosetta Science Operations Scheduling Legacy Workshop”. The workshop taught university students how the Rosetta mission was planned before and after launch of the spacecraft. The workshop provided the opportunity to understand how missions at ESA are run and planned, learn the basics of the software MAPPS, and promote postgraduate opportunities available for European and Canadian graduate students.

December 8 - 1:30-2:30 PM - Joint Seminar with Physics and Astronomy

Dr. Robert Weryk -"Discovery circumstances of the first interstellar asteroid"

Abstract- For the first time ever astronomers have studied an asteroid that has entered the Solar System from interstellar space. Observations from ESO’s Very Large Telescope in Chile and other observatories around the world show that this unique object was traveling through space for millions of years before its chance encounter with our star system. It appears to be a dark, reddish, highly-elongated rocky or high-metal-content object. Our team from the Pan-STARRS observatory – being the first to detect the interstellar visitor – has chosen the name 'Oumuamua’ for our discovery. The name is of Hawaiian origin and means a messenger from afar arriving first. I will discuss the results that appeared in Nature on 20 November 2017.</p <!--